
StreamingAl

Federated Embedded Al for the digital transformation of Austrian Industries.

Alois Ferscha^{1,2}, Bernhard Anzengruber-Tanase¹, Michael Haslgrübler¹, Ekaterina Sysoykova¹, Georgios Sopidis¹, Behrooz Azadi¹, Michael Siegl¹, Miguel Vazquez², Patrick Denzler², Sepp Hochreiter³

Pro2Future GmbH¹, JKU-IPC (Institute of Pervasive Computing)², JKU-IML (Institute of Machine Learning)³

- ¹ Science Park 4, Altenberger Strasse 69, 4040 Linz
- ² Science Park 3, Altenberger Strasse 69, 4040 Linz
- ³ Science Park 3, Altenberger Strasse 69, 4040 Linz

MOTIVATION & GOALS

Streaming Al aims to drive low TRL, foundational research to develop Al for industrial applications. In contrast to conventional pre-trained, holistic, and resource-intensive Al,

streaming machine learning methods

FRAMEWORK

ii. on-device machine learning methods are to be introduced,

Project FactBox

18 Months

Project Name StreamingAl **Project ID**

Area 1

Area Perception

Project Lead

Duration

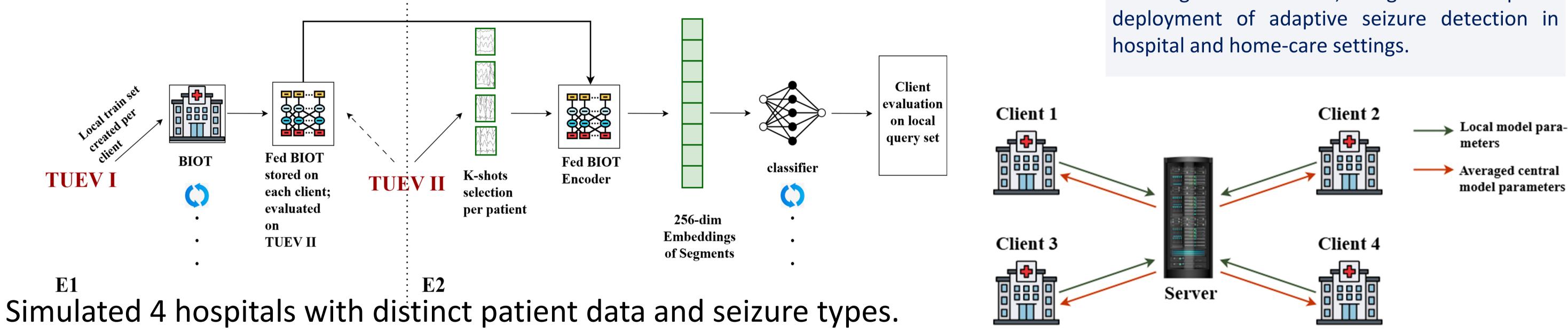
Dr. Bernhard Anzengruber-

Tanase

thereby reducing dependence on mass training data and supporting ecological sustainability.

STATIC FEDERATION and FEW-SHOT LEARNING

Developing privacy-preserving Al for time-series classification using Federated Few-Shot Learning (FFSL), enabling cross-institutional model training without data sharing and rapid local adaptation to individuals.


CONTRIBUTION

Scientific contribution

Demonstrating the integration of few-shot and federated learning for privacy-preserving, personalized time series classification.

Economic contribution

Enabling cost-efficient, regulation-compliant deployment of adaptive seizure detection in

Federated Averaging

Two-stage training:

E1: Federated pre-training of a transformer-based seizure classification model on distributed EEG data.

E2: Federated few-shot learning for patient-specific seizure detection.

Client Patient # Bal. Accuracy 0.838 0.912 0.533 6 0.797

Metric	BIOT	Fed BIOT
Bal. Accuracy	0.5207	0.4328

RESULTS

- Federated model shows slightly lower performance than centralized but gains real-world applicability through privacy compliance.
- FFSL achieves up to 91% balanced accuracy with just 5 labeled samples per patient, demonstrating feasible privacy-preserving, personalized seizure detection.

IMPACT

- Predictive maintenance: cross-site training, local adaptation with few samples
- Wearable health monitoring: shared model, personalized to each user.

Contact: Dr. Bernhard Anzengruber-Tanase, Pro2Future GmbH, bernhard.anzengruber@pro2future.at, +43 732 2468 - 9474 **Acknowledgement**: This work was supported by Pro²Future II (FFG, 911655) and the Province of Upper Austria (Land OÖ).

