StreamingAl

Neuromorphic Embedded AI for the digital transformation of Austrian Industries.

Alois Ferscha^{1,2}, Bernhard Anzengruber-Tanase¹, Michael Siegl¹, Michael Haslgrübler¹, Ekaterina Sysoykova¹, Georgios Sopidis¹, Behrooz Azadi¹, Sepp Hochreiter³, Robin Dietrich⁴, Nico Reeb⁴, Alois Knoll⁴

Pro2Future GmbH¹, JKU-IPC (Institute of Pervasive Computing)², JKU-IML (Institute of Machine Learning)³, TUM⁴

- ¹ Science Park 4, Altenberger Strasse 69, 4040 Linz
- ^{2,3} Science Park 3, Altenberger Strasse 69, 4040 Linz
- ⁴ Friedrich-Ludwig-Bauer-Str. 3(5932)/II, D-85748 Garching b. München

MOTIVATION & GOALS

Streaming Al aims to drive low TRL, foundational research to develop Al for industrial applications. In contrast to conventional pre-trained, holistic, and resource-intensive Al,

- i. streaming machine learning methods
- ii. on-device machine learning methods are to be introduced,

Project FactBox

Project Name StreamingAl Project ID -

18 Months

Area 1

Duration

Area Perception

Project Lead

Dr. Bernhard Anzengruber-

Tanase

thereby reducing dependence on mass training data and supporting ecological sustainability.

NEUROMORPHIC SEQUENCE LEARNING

Is it possible to implement multi-compartment (MC) neurons and spiking hierarchical temporal memory (S-HTM) on digital neuromorphic hardware to the same efficacy as has been shown in simulations and analog hardware?

- Implement topology of cortical columns
- Use S-HTM learning rules (facilitate, depression, homeostasis)
- On digital neuromorphic hardware (Intel Loihi2)
- Achieve sequence learning

CONTRIBUTION

Scientific contribution

Demonstrating multi-compartment neuron in future embedded AI hardware.

Economic contribution

Advancing to sequence learning in Streaming, Federated, Embedded-AI that is independent of large datasets

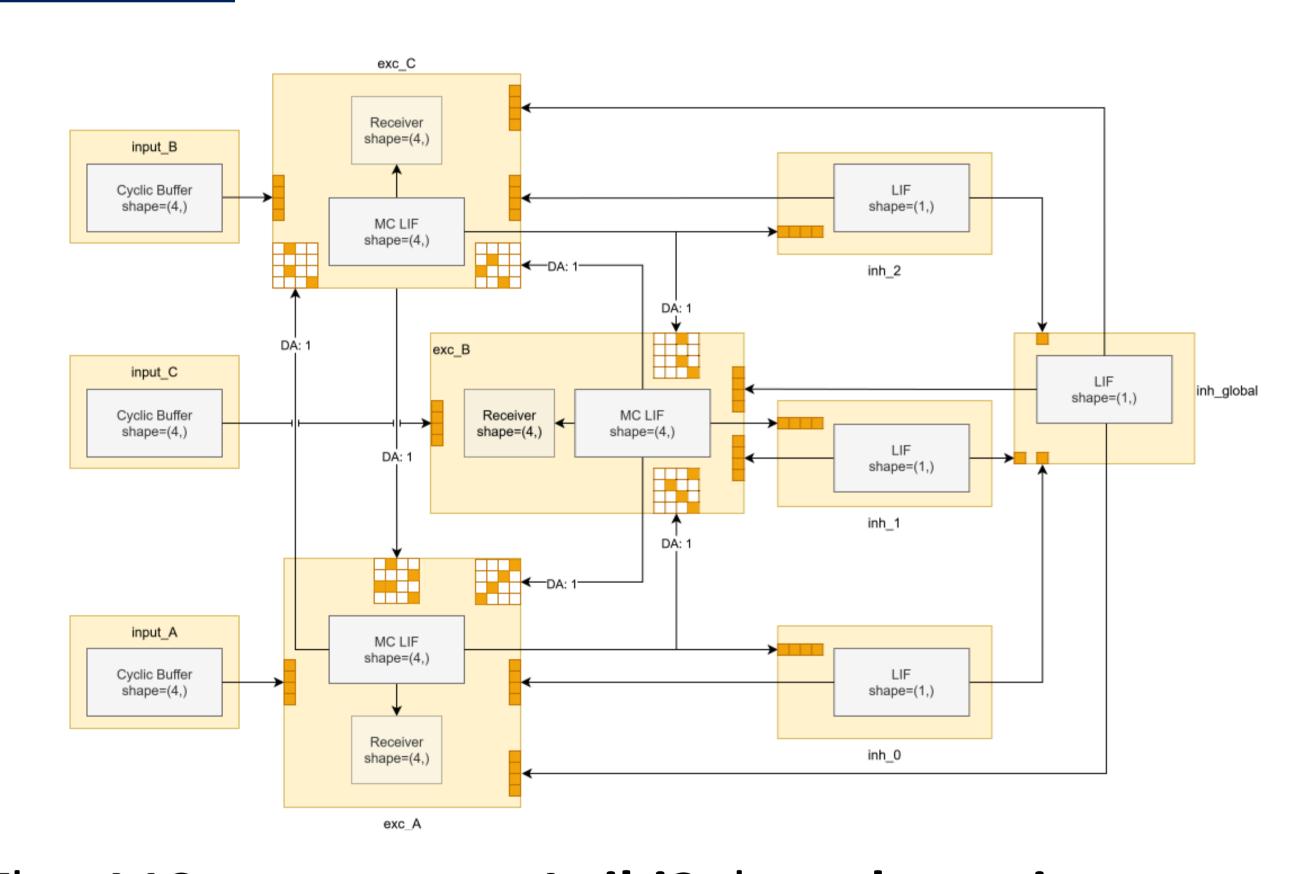
MULTI-COMPARTMENT NEURON

Apical tuft

Soma

Proximal

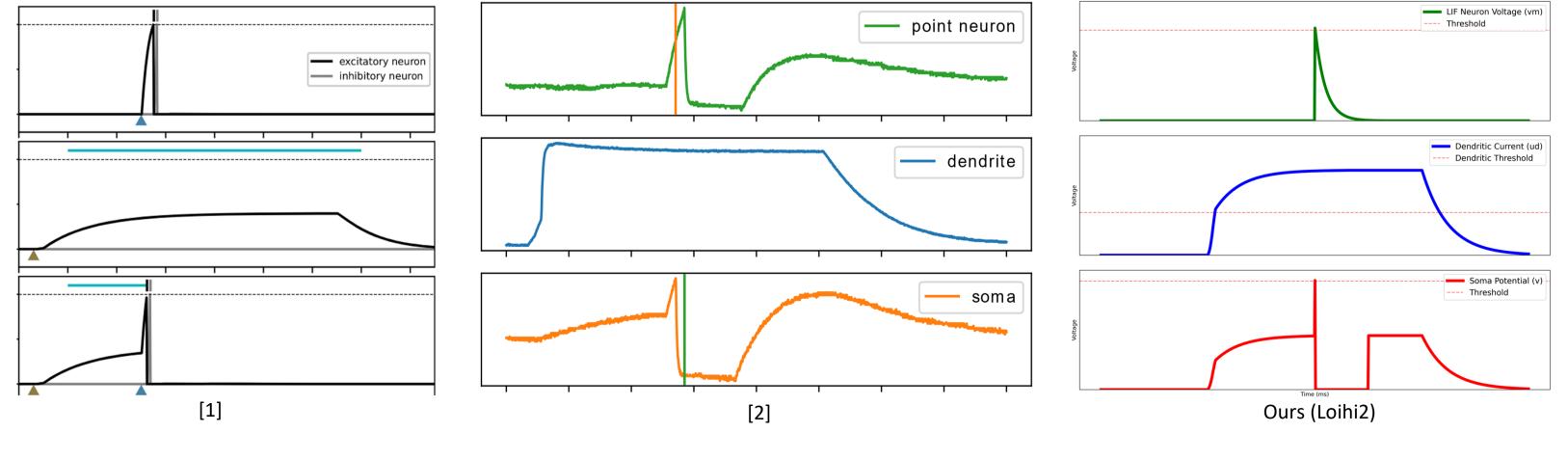
Distal


Biological Inspiration

Neocortical pyramidal neurons

Dendritic compartments lead to different depolarization outcomes at the soma:

- additive integration of input spike
- sustained plateau potential over time


HARDWARE IMPLEMENTATION

The MC neuron on **Loihi2** has **dynamics** more similar to the **BSS-2** implementation by [2]. However due to **no noise** beyond inaccuracies caused by differing simulation details, it can be treated the same as in the **NEST** simulation by [1].

[1] Y. Bouhadjar, D. J. Wouters, M. Diesmann, und T. Tetzlaff, "Sequence learning, prediction, and replay in networks of spiking neurons", *PLoS Comput Biol*, Bd. 18, Nr. 6, S. e1010233, Juni 2022
[2] R. Dietrich, P. Spilger, E. Müller, J. Schemmel, und A. C. Knoll, "Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP", in *Machine Learning, Optimization, and Data Science*, G. Nicosia, V. Ojha, S. Giesselbach, M. P. Pardalos, und R. Umeton, Hrsg., Cham: Springer Nature Switzerland, 2025, S. 207–230

DYNAMICS COMPARISON

Contact: Michael Siegl, BSc, Pro2Future GmbH, michael.siegl@pro2future.at **Acknowledgement**: This work was supported by Pro²Future II (FFG. 911655) and

Acknowledgement: This work was supported by Pro²Future II (FFG, 911655) and the Province of Upper Austria (Land OÖ) and Technical University Munich.

und Tourismus

