Al4Steel

Enhancing Production and Logistics Efficiency in the Steel Industry Through Human-AI Collaboration

Niccolo Filipas¹, Jakob Zethofer¹, Srijan Shakya¹, Ahmed Mansour², Matej Vukovic¹, Marc Streit², Roman Kern³, Belgin Mutlu ¹

Pro2Future GmbH¹, JKU-ICG (Institute for Computer Graphics)², TUG-ISDS (Institute of Interactive Systems and Data Science)³

- ¹ Sandgasse 34, 8010 Graz, Austria and Science Park 4, Altenberger Straße 69, 4040 Linz, Austria
- ² Science Park 3, Altenberger Straße 69, 4040 Linz, Austria
- ³ Sandgasse 36/III, 8010 Graz

MOTIVATION & GOALS

The **steel industry** is undergoing increasing complexity, necessitating the integration of **advanced AI methods** to **enhance operational efficiency** and support **informed**, **data-driven decision-making**. The goal of the AI4Steel project is to **optimize production** and **logistics processes** by leveraging **human-AI collaboration frameworks**. Through the intelligent transformation of high-dimensional and heterogeneous data into actionable insights, the project aims to facilitate more **adaptive**, **data-driven workflows** across the steel value chain. The initiative specifically targets two critical business units: **BU BAND**, responsible for coil production, and **BU BRAMME**, focused on slab production.

Project FactBox

Project Name Al4SteelProject ID MFP A.1Duration 48 Months

Area 3Area Analytics

Project LeadDI Dr. Belgin Mutlu

APPROACH

BU BAND: To simplify interaction with complex industrial data, the project combines **Generative AI**, an **agent-based system**, and a domain-specific **knowledge graph**. This enables natural language querying, with the agent dynamically assuming roles such as data analyst, SQL query builder, and debugger to support seamless data access and analysis.

BU BRAMME: We combine **ML/DL techniques** with domain-specific steelmaking expertise to develop **predictive models** tailored for industrial applications. Through **expert-guided preprocessing**, **feature engineering**, and **ensemble methods**, we ensure high accuracy and reliability for industrial deployment.

CONTRIBUTION

Scientific contribution

- Deployment of advanced AI and machine learning approaches for forecasting, optimization, and automation in complex industrial environments.
- Enabling data-driven decision-making in the steel industry through the integration of cutting-edge AI technologies and interactive visual components.

Economic contribution

- Al-driven process optimization reduces errors and enhances production reliability.
- Data-based optimization supports resource-efficient and sustainable manufacturing.
- Interactive AI assistance systems enable faster and more informed decision-making for employees.
- The project generates new insights into AI-supported visual process optimization and data-driven production control.

FRAMEWORK

Framework for SQL generation

Knowledge Graph Representation of Database Schema

Steel Casting Steel ... Cooling water flow rate

5 30.12 0.73 ... 6.76

ML

defect

Y/N segment i

Contact: Dr. Belgin Mutlu, Pro2Future GmbH, belgin.mutlu@pro2future.at, +43 664 88371323. **Acknowledgement**: This work was supported by Pro²Future II (FFG, 911655) and voestalpine Stahl GmbH.

