VIVARIUMII

Visualization of Welding Data for Anomaly Detection

Josef Suschnigg¹, Belgin Mutlu¹, Tobias Schreck²

Pro2Future GmbH¹, TUG-IVC (Institute for Visual Computing)²
¹ Sandgasse 34, 8010 Graz, Austria

² Inffeldgasse 16, 8010 Graz, Austria

MOTIVATION & GOALS

In automated welding, manual visual inspection remains essential to ensure product quality. To better support domain experts in **data-driven quality inspection**, we develop **ML-powered Visual Analytics** approaches that leverage **sensor** and **image** data collected during the welding process. Acting as an interface between domain experts and machine learning (ML), Visual Analytics enables a **human-centered approach** to exploring process time series and **detecting anomalies**. This results in actionable insights, improved quality control, and a unified **understanding** of the entire welding process.

Project FactBox

Project Name VIVARIUM IIProject ID MFP A.3Duration 12 Months

Area 3
Area Analytics

Alea Allalytics

Project LeadDI Dr. Belgin Mutlu

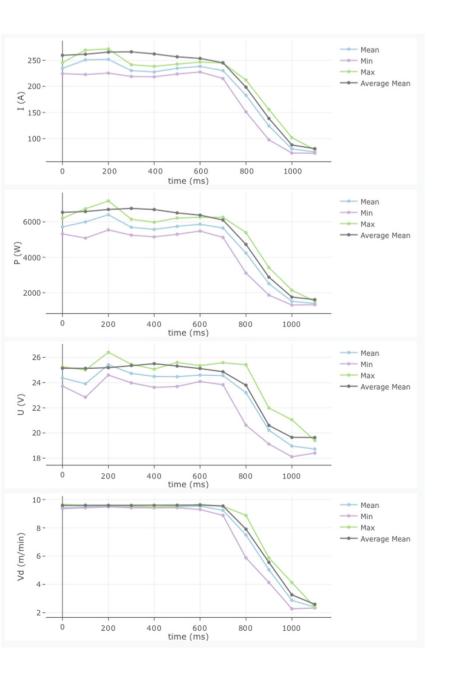
APPROACH

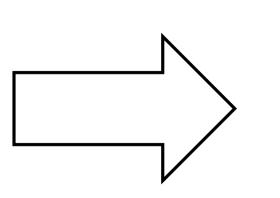
In close collaboration with welding domain experts, we design a Visual Analytics prototype that combines a Python-based backend for ML/DL methods with a modern JavaScript frontend. The system integrates multi-modal data (i.e., sensor time series and weld images) and includes guidance features to highlight relevant patterns. It will be prototypically deployed at Fronius to ensure practical relevance and impact.

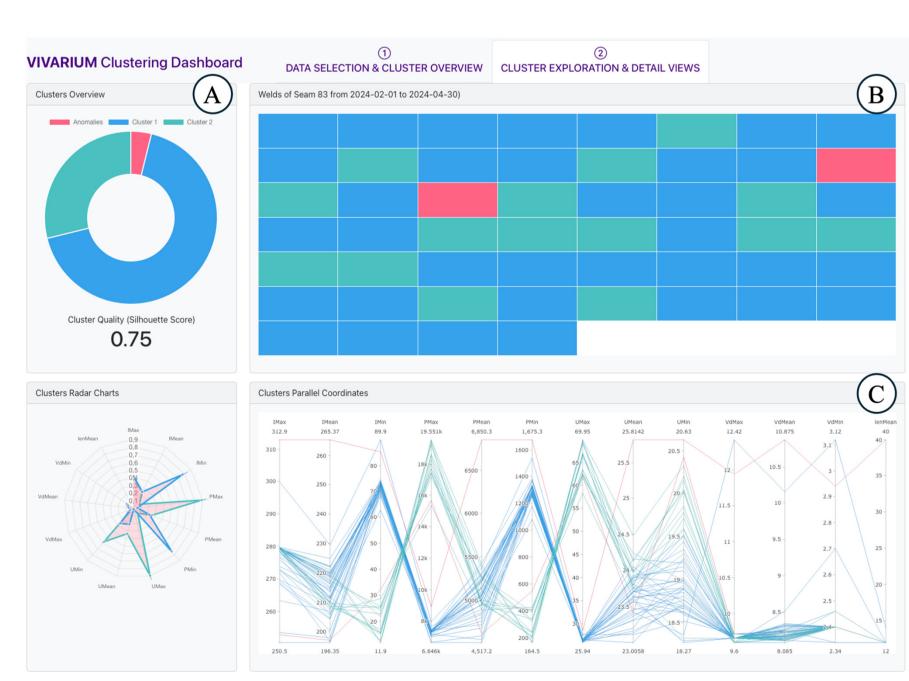
CONTRIBUTION

Scientific contribution

- Design and user studies for multimodal Visual Analytics
- Novel interaction and view tailored to the welding use case
- Prototype development


Economic contribution


- Lower manual inspection effort through data-driven quality analysis
- Streamline quality assurance workflows
- Optimize expert time usage, lowering operational costs


SYSTEM ARCHITECTURE

The system unifies **multi-modal welding data** within a backend that supports advanced analytics and **ML/DL**-based fusion. Through **interactive dashboards**, domain experts can intuitively explore **anomalies** and process dynamics, fostering **real-time insight** and **informed decision-making**.

Contact: DI Josef Suschnigg, Pro2Future GmbH, josef.suschnigg@pro2future.at **Acknowledgement**: This work was supported by Pro²Future II (FFG, 911655) and Fronius International GmbH.

